解析函数y(x^2+21)√(x^2-11)=13的图像示意图

     本经验主要介绍所列函数y(x^2+21)√(x^2-11)=13的定义域、值域、单调性及极限等性质,同时简要画出函数y(x^2+21)√(x^2-11)=13的图像示意图。

方法/步骤

1、根据函数特则解析函数的定义域,由于函数为分式函数,且含有根式,即可求自变量的取值范围,则为函数的定义域。

图片[1]-解析函数y(x^2+21)√(x^2-11)=13的图像示意图-趣考网

2、设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A–B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。

3、利用函数的导数知识,计算函数的一阶导数,得到函数的驻点,判断函数的单调性,并求出函数的单调区间。

图片[2]-解析函数y(x^2+21)√(x^2-11)=13的图像示意图-趣考网

4、解析函数的凸凹性,利用函数的导数知识,计算函数的二阶导数,判断函数的凸凹性,并求出函数的凸凹区间。

图片[3]-解析函数y(x^2+21)√(x^2-11)=13的图像示意图-趣考网

5、如果函数的二阶导数大于0,那么函数在该区间内是凹函数;如果函数的二阶导数小于0,那么函数在该区间内是凸函数。

6、函数上的五点示意图如下:

图片[4]-解析函数y(x^2+21)√(x^2-11)=13的图像示意图-趣考网

7、图片[5]-解析函数y(x^2+21)√(x^2-11)=13的图像示意图-趣考网

8、综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,函数的示意图如下:

图片[6]-解析函数y(x^2+21)√(x^2-11)=13的图像示意图-趣考网

本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享