本经验通过函数的定义域、单调性、凸凹性、极限等性质,介绍函数用导数工具画函数y=-4×4^x-2^x的图像的主要步骤。
方法/步骤
1、函数为幂函数和指数函数的和,因幂函数和指数函数的定义域为全体实数,所以整体y的定义域为全体实数。
2、计算函数的一阶导数,根据导数符号,解析函数的单调性。
3、 函数的单调性也叫函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
4、通过函数y的二阶导数,判断函数的凸凹性,可知函数在定义域上为凹函数。
5、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y’=f'(x)仍然是x的函数,则y’=f'(x)的导数叫作函数y=f(x)的二阶导数。
6、函数的极限,列举函数在正无穷大、负无穷大和原点处的极限。
7、根据本例函数的特征,函数部分点的五点图解析表如下:
8、综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,函数的示意图如下。
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除
© 版权声明
本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!
THE END