本文介绍函数的定义域、单调性、凸凹性及极限等性质,并通过导数求解函数y=75lnx+8x^2+30 的凸凹区间,简要画出函数图像。
方法/步骤
1、 对自然对数lnx而言,要求真数为正数,另x^2项的定义域为全体实数,所以本经验涉及的函数的定义域为:(0,+∞)。
2、在高中数学里,定义域的定义为:设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和吐低它对应,那么就称f:A–B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
3、通过和函数的独冲岔单调性进行判断,因为函数lnx与x²在x>0的区间上,均为增函数,则两函数的和也为增函数。
4、 函数的单调性也叫函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性劫霸。
5、用导数解析函数的凸凹性,计算函数的二阶导数,即可得到函数的拐点。
6、根据二阶导数与函数的凸凹性判断原则,即可解析函数的凸凹区间,同时计算出函数在端点处的极限。
7、如果函数的二阶导数大于0,那么函数在该区间内是凹函数;如果函数的二阶导数小于0,那么函数在该区间内是凸函数。
8、列举函数上部分特征点图表,并根据函数的定义域、单调性、凸凹性及极限等性质,即可简要画出函数的图像示意图。
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除
© 版权声明
本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!
THE END