详解y(x^2+16)√(x^2-15)=85的图像画法

     本经验主要介绍所列函数的定义域、值域、单调性及极限等性质,同时简要画出函数的图像示意图。

方法/步骤

1、根据函数特则解析函数的定义域,由于函数为分式函数,且含有根式,即可求自变量的取值范围,则为函数的定义域。

图片[1]-详解y(x^2+16)√(x^2-15)=85的图像画法-趣考网

2、函数的定义域是函数的三要素(定义域、值域、对应法则)之一,指函数自变量的取值范围。具体来说,对于两个存在函数对应关系的非空集合D、M,如果集合D中的任意一个数,在集合M中都有且仅有一个确定的数与之对应,则集合D称为函数的定义域。

3、解析函数的单调性,计算函数的一阶导数,得到函数的驻点,判断函数的单调性,并求出函数的单调区间。

图片[2]-详解y(x^2+16)√(x^2-15)=85的图像画法-趣考网

4、函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。

5、如果函数的二阶导数大于0,那么函数在该区间内是凹函数;如果函数的二阶导数小于0,那么函数在该区间内是凸函数。

图片[3]-详解y(x^2+16)√(x^2-15)=85的图像画法-趣考网

6、函数上的五点示意图如下:

图片[4]-详解y(x^2+16)√(x^2-15)=85的图像画法-趣考网

7、函数在y轴左边点的坐标解析图表如下所示:

图片[5]-详解y(x^2+16)√(x^2-15)=85的图像画法-趣考网

8、综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,函数的示意图如下:

图片[6]-详解y(x^2+16)√(x^2-15)=85的图像画法-趣考网

本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享