本文根据分部积分法、三角换元法以及凑分法等方法,介绍不定积分I=∫51x^3/√(51-10x^2)dx的计算步骤。
方法/步骤
1、解法一:思路:根据分子分母的关系,直接变形化简使用凑分法求得:
I=-∫(51/10)[x(51-10x^2)-51x]dx/√(51-10x^2)
=-(51/10)∫x(51-10x^2)dx/√(51-10x^2)+ (2601/10)∫xdx/√(51-10x^2)
=-(51/10)∫x√(51-10x^2)dx-(2601/2)*1/10^2∫d(51-10x^2)/√(51-10x^2)
=-51*1/10^2∫√(51-10x^2)d(51-10x^2)- 2601*1/10^2√(51-10x^2)
=34 *1/10^2√(51-10x^2)^3-2601*1/10^2*√(51-10x^2)+c
2、解法二:思路:利用不定积分的分部积分方法求得:
I=51∫x^2*xdx/√(51-10x^2)
=-(51/20)∫x^2d(51-10x^2)/√(51-10x^2)
=-(51/20)∫x^2d√(51-10x^2)=-(51/20)x^2√(51-10x^2)+(51/20) ∫√(51-10x^2)dx^2
=-(51/20)x^2√(51-10x^2)-(51/2)*1/10^2∫√(51-10x^2)d(51-10x^2)
=-(51/20)x^2√(51-10x^2)-17*1/10^2√(51-10x^2)^3+c
3、解法三:
思路:利用三角函数的代换关系,进行三角换元积分求得。
设x=√(51/10)sint,则cost=(1/√51)√(51-10x^2),此时:
I=(2601/10)*√(51/10)∫sin^3td[√(51/10)sint]/√(51-51sin^2t),
=51*(51/10)^2∫sin^3tcostdt/√51*cost,
=(2601√51 /10^2)∫sin^3tdt,
4、=(2601√51 /10^2)∫sint(1-cos^2 t)dt
=(2601√51 /10^2)∫sintdt-(2601√51 /10^2)∫sintcos^2 tdt
=-(2601√51 /10^2)cost+(2601√51 /10^2)∫cos^2tdcost=-(2601√51 /10^2)cost+(2601√51 /3*10^2)cos^3t+c
=-(2601/10^2)√(51-10x^2)+17*(1/10^2)√(51-10x^2)^3+c.
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除