本文根据分部积分法、三角换元法以及凑分法等方法,介绍不定积分的计算步骤。
方法/步骤
1、解法一:思路:根据分子分母的关系,直接变形化简使用凑分法求得:
I=-∫(95/53)[x(79-53x^2)-79x]dx/√(79-53x^2)
=-(95/53)∫x(79-53x^2)dx/√(79-53x^2)+ (7505/53)∫xdx/√(79-53x^2)
=-(95/53)∫x√(79-53x^2)dx-(7505/2)*1/53^2∫d(79-53x^2)/√(79-53x^2)
=-(95/1) *1/53^2∫√(79-53x^2)d(79-53x^2)- 7505*1/53^2√(79-53x^2)
=(190/3) *1/53^2√(79-53x^2)^3-7505*1/53^2*√(79-53x^2)+c
2、解法二:思路:利用不定积分的分部积分方法求得:
I=95∫x^2*xdx/√(79-53x^2)
=-(95/106)∫x^2d(79-53x^2)/√(79-53x^2)
=-(95/106)∫x^2d√(79-53x^2)=-(95/106)x^2√(79-53x^2)+(95/106) ∫√(79-53x^2)dx^2
=-(95/106)x^2√(79-53x^2)-(95/2)*1/53^2∫√(79-53x^2)d(79-53x^2)
=-(95/106)x^2√(79-53x^2)-(95/3)*1/53^2√(79-53x^2)^3+c
3、解法三:
思路:利用三角函数的代换关系,进行三角换元积分求得。
设x=√(79/53)sint,则cost=(1/√79)√(79-53x^2),此时:
I=(7505/53)*√(79/53)∫sin^3td[√(79/53)sint]/√(79-79sin^2t),
=95*(79/53)^2∫sin^3tcostdt/√79*cost,
=(7505√79 /53^2)∫sin^3tdt,
=(7505√79 /53^2)∫sint(1-cos^2 t)dt
4、=(7505√79 /53^2)∫sintdt-(7505√79 /53^2)∫sintcos^2 tdt
=-(7505√79 /53^2)cost+(7505√79 /53^2)∫cos^2tdcost=-(7505√79 /53^2)cost+(7505√79 /3*53^2)cos^3t+c
=-(7505/53^2)√(79-53x^2)+(95/3)*(1/53^2)√(79-53x^2)^3+c.
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除