画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤

     本经验通过函数的定义域、单调性、凸凹性、奇偶性等性质,介绍函数用导数工具画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤。

主要方法与步骤

1、       本步骤用导数知识来判断,先求函数的一阶导数,根据一阶导数,解析函数的单调性。

图片[1]-画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤-趣考网

2、定义域是指该函数的有效范围,函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。

3、 如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凸函数的充要条件是f”(x)<=0。

图片[2]-画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤-趣考网

4、函数的奇偶性判断,以及函数上的部分点图表。

图片[3]-画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤-趣考网

5、       根据函数的单调区间和凸凹区间,结合函数定义域、值域、单调性、奇偶性、凸凹性等性质,即可画出函数图像的示意图。

图片[4]-画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤-趣考网

6、函数是数学中非常重要的概念,它描述了一种输入输出之间的关系。下面列出了一些常见的函数性质:

 

7、定义域:函数的定义域是指所有合法的输入值的集合。函数的定义域可以是任何集合,但通常是实数集或整数集等。

图片[5]-画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤-趣考网

8、值域:函数的值域是指所有合法的输出值的集合。函数的值域也可以是任何集合,但通常是实数集或整数集等。

图片[6]-画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤-趣考网

9、单调性:如果函数在其定义域内的某个区间上始终单调递增(或递减),那么它就是单调递增(或递减)函数。如果函数在其定义域内不是单调的,那么它就是非单调函数。

图片[7]-画函数y=(8-5x^2)/(34+6x^2)的图像的主要步骤-趣考网

本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享