本经验通过函数的定义域、单调性、凸凹性、极限等,介绍函数y=(x-2)^3的图像的主要步骤。
方法/步骤
1、通过函数的一阶导数,求出函数y=(x-2)^3的单调区间。
2、 如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
3、通过函数的二阶导数,解析函数y=(x-2)^3的凸凹区间。
4、如果当x趋近于x0(或者无穷大)时,函数f(x)的值无限接近于一个确定的常数A,那么就说A是函数f(x)在x趋近于x0(或者无穷大)时的极限。
5、函数部分点解析表,以及函数y=(x-2)^3的示意图如下所示。
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除
© 版权声明
本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!
THE END