怎么画函数y(39x+42)²=8的图像示意图?

      主要内容:本题主要介绍函数y=8/(39x+42)^2的定义域、值域、单调性、凸凹性、极限等性质,并通过函数导数知识求解函数的单调区间和凸凹区间。

主要内容

1、函数y=8/(39x+42)^2的定义域,该函数y为分式函数,要求分母不为0,即可求出函数y=8/(39x+42)^2的定义域。

图片[1]-怎么画函数y(39x+42)²=8的图像示意图?-趣考网

2、在高中数学里,定义域的定义为:设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A–B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。

3、导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。

图片[2]-怎么画函数y(39x+42)²=8的图像示意图?-趣考网

4、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。

5、如果一个函数f(x)在某个区间I上有f”(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。

6、结合函数y=8/(39x+42)^2的定义域及单调等性质,列举函数y=8/(39x+42)^2上的部分点五点图及函数y=8/(39x+42)^2的图像示意图。

图片[3]-怎么画函数y(39x+42)²=8的图像示意图?-趣考网

本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享