本经验通过函数的定义域、单调性、凸凹性等性质,介绍函数用导数工具画隐函数的图像的主要步骤。
方法/步骤
1、如果函数的对应关系有解析表达式来表示,则使解析式有意义的自变量的取值范围称为自然定义域。
2、求出函数的一阶导数,此时导数表达式中既含有自变量x,也含有因变量y,根据导数的符号,解析函数的单调性。
3、函数的单调性也叫函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
4、计算出函数的二阶导数,计算出函数的拐点,解析拐点的符号,即可判断函数的凸凹性并计算出函数的凸凹区间。
5、曲线上部分特征点坐标如下所示。
6、
将上述坐标,把五点图进行变化,调整为以x表示为y。
7、根据函数的单调和凸凹等性质,在定义域范围描点,即可画出本题复合函数的示意图。
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除
© 版权声明
本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!
THE END