复合指数函数y=2的4x的图像如何画?

      本经验通过函数的定义域、值域、单调性、凸凹性等,介绍函数y=2^(4x)的主要性质及画出图像的主要步骤。

方法/步骤

1、       函数为指数函数的复合函数,即x可以取全体实数,所以可得到函数的定义域,为(-∞,+∞)。

图片[1]-复合指数函数y=2的4x的图像如何画?-趣考网

2、  函数在数学上的定义:给定一个非空的数集A,对A加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数.

3、 函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。

图片[2]-复合指数函数y=2的4x的图像如何画?-趣考网

4、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。

5、通过函数的二阶导数,求出函数的凸凹区间。

图片[3]-复合指数函数y=2的4x的图像如何画?-趣考网

6、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y’=f'(x)仍然是x的函数,则y’=f'(x)的导数叫作函数y=f(x)的二阶导数。

7、根据函数的定义域,主要判断函数在无穷远处和0点处的极限。

图片[4]-复合指数函数y=2的4x的图像如何画?-趣考网

8、根据函数的单调性、凸凹性等性质,可列举函数部分点解析表如下:

图片[5]-复合指数函数y=2的4x的图像如何画?-趣考网

9、在函数的定义域下,结合函数的单调性、凸凹性以及极限等性质,函数的示意图如下:

图片[6]-复合指数函数y=2的4x的图像如何画?-趣考网

本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除

© 版权声明
THE END
喜欢就支持一下吧
点赞13 分享