分别介绍用复合函数单调性、三角换元法、导数法和数形结合法求函数y=√5-x^2在[0,√5]上的最值.
方法/步骤
1、方法1:复合函数单调性质求解
∵y=√5-x^2函数由幂函数y=√u,u=5-x^2复合而成,
且在x≥0时,y=√u为增函数,u=-x^2+5为减函数。
∴函数y=√5-x^2在区间[0,√5]上为减函数。
所以:
ymax=f(0)=√(5-0)=√5,
ymin=f(√5)=0.
2、方法2.三角换元法
设x=√5*sint,t∈[0,π/2],则:
y=√5-x^2
=√[5-(√5*sint)^2]
=√5*√(1-sin^2t)
=√5*cost.
根据cost在[0,π/2]上的取值,可知:
ymax=f(0)=√5*cos0=√5,
ymin=f(π/2)=√5*cosπ/2=0。
3、方法3.数形结合法
∵y=√5-x^2≥0
∴y^2=5-x^2
即:y^2+x^2=5.
又因为y^2的系数=1,x^2的系数=1,则可以把上述方程看成圆在x轴上方的部分。
此时ymin=0,y的最大值为曲线在y轴上的截距。
即:ymax=f(x=0)=√5。
4、方法4.导数法
∵y=√5-x^2
∴y'=-x/√5-x^2。
又因为x∈[0,√5],即x≥0.
所以-x≤0,则y'≤0.
故函数y在定义域上为减函数。
ymax=f(0)=√(5-0)=√5,
ymin=f(√5)=0。
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除
© 版权声明
本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!
THE END