本文介绍函数的定义域、单调性、凸凹性及极限等性质,并通过导数求解函数y=70lnx+89x^2+72 的凸凹区间,简要画出函数图像。
方法/步骤
1、 对自然对数lnx而言,要求真数为正数,另x^2项的定义域为全体实数,所以本经验涉及的函数的定义域为:(0,+∞)。
2、在高中数学里,定义域的定义为:设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A–B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
3、通过和函数的单调性进行判断,因为函数lnx与x²在x>0的区间上,均为增函数,则两函数的和也为增函数。
4、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
5、用导数解析函数的凸凹性,计算函数的二阶导数,即可得到函数的拐点。
6、根据拐点的符号,即可解析函数的凸凹区间。同时解析函数的极限。
7、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y’=f'(x)仍然是x的函数,则y’=f'(x)的导数叫作函数y=f(x)的二阶导数。
8、列举函数上部分特征点图表,并根据函数的定义域、单调性、凸凹性及极限等性质,即可简要画出函数的图像示意图。
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除
© 版权声明
本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!
THE END