介绍函数y(x^2+10)√(x^2+1)=1的定义域、值域、单调性及极限等性质,同时简要画出函数y(x^2+10)√(x^2+1)=1的图像示意图。
方法/步骤
1、 解析函数的定义域,因为分母为两项的乘积,各项均为非零实数,故函数的自变量x可以取任意实数,即函数的定义域为:(-∞,+∞)。
2、定义域是指该函数的有效范围,函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。
3、计算函数的一阶导数,得到函数的驻点,根据驻点判断导数的符号,进而计算函数的单调性并求出函数的单调区间。
4、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
5、解析函数的奇偶性质,以及函数的极限计算。
6、函数五点图,函数上部分点解析表如下:
7、综合以上函数的相关性质,结合函数的定义域,即可简要画出函数的示意图。
本文来自于百度作者:吉禄学阁,仅代表原作者个人观点。本站旨在传播优质文章,无商业用途。如不想在本站展示可联系删除
© 版权声明
本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!
THE END